Graph Theory

B. Math. II
Mid-Term Examination

Instructions: All questions carry ten marks. All graphs are assumed to be simple.

1. Define connected component of a graph. Prove that a graph G with n vertices and $e \leq n-1$ edges has $n-e$ connected components if and only if it contains no cycle.
2. A cut-edge of a graph G is an edge such that its removal increases the number of connected components of G. Prove that a graph having no vertex of odd degree has no cut-edge. Further, for each $k \geq 1$, give an example of a $(2 k+1)$-regular graph with at least one cut-edge.
3. Define a Hamiltonian graph. If G is Hamiltonian and if $S \subseteq V(G)$, then prove that the induced graph on $V(G) \backslash S$ has at most $|S|$ connected components.
4. Define connectivity of a graph. Prove that a graph G with at least three vertices is 2-connected if and only if given any two distinct vertices of G, there exist at least two internally disjoint paths between them.
5. Define a planar graph. Let $n \geq 3$ be a natural number and let S be a subset of n points in the plane such that the distance between any two distinct points of S is at least one. Then, prove that there are at most $3 n-6$ pairs u, v in S such that $d(u, v)=1$.
